2009 JBMO Shortlist #A1
Determine all integers $a, b, c$ satisfying the identities $$a + b + c = 15$$
$$(a - 3)^3 + (b - 5)^3 + (c -7)^3 = 540.$$
Note that if $x, y, z$ are integers such that $x+y+z=0$, then $$x^3+y^3+z^3=x^2+y^3+(-x-y)^3=x^3+y^3+x^3+y^3-3xy(x+y)=3xyz.$$
Also, since $a+b+c=15$, we have $(a-3)+(b-5)+(c-7)=0$. Using the fact we noted above, we see that $$540\underset{\text{given}}{=}(a-3)^3+(b-5)^3+(c-7)^3=3(a-3)(b-5)(c-7)$$
$$\implies (a-3)(b-5)(c-7)=180=2^3\cdot 3^2\cdot 5.$$
But $(a-3)+(b-5)+(c-7)=0$, so we must have $(a-3)(b-5)(c-7)=4\cdot 5\cdot 9$.
We have four possible cases from here, namely
$$(a-3, b-5, c-7)=(-4,-5,9)$$
$$(a-3, b-5, c-7)=(-5,-4,9)$$
$$(a-3, b-5, c-7)=(4,5,9)$$
$$(a-3, b-5, c-7)=(5,4,9)$$
Solving these $4$ system of equations gives us $$\boxed{(a,b,c)=(-1,0,16), (-2,1,16), (7, 10, -2), (8, 9, -2)}.$$
$\square$
Comments
Post a Comment